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If L is a Jordan curve or a Jordan arc and pn is a monic polynomial of degree
n we obtain estimates for the discrepancy between the equilibrium measure +L of L
and the distribution &pn

of the zeros of pn based on one-sided bounds for the dif-
ference U(+L&&pn

, z) of their logarithmic potentials. These new estimates generalize
known results to the case that L is not smooth, i.e., corners of L are allowed, but
cusps are not. Moreover, the results are independent of the angles at the corners.
The method of proof shows that both situations��upper or lower bounds of
U(+L&&pn

, z)��can be treated simultaneously. As an application, the distribution of
Fekete points and extremal points of best uniform approximants can be
investigated generalizing results of Kleiner [14] and Blatt and Grothmann [6] to
Jordan curves and arcs with corners. � 1997 Academic Press

1. INTRODUCTION

Let L/C be a bounded Jordan curve or Jordan arc and let _ be a
signed measure on L. The discrepancy of _ is defined by

D[_] :=sup |_(J)|,

where the supremum is taken over all subarcs J�L. In applications, fre-
quently the signed measure _ is the difference between the equilibrium
measure +=+L of L [21] and the normalized zero counting measure
&=&pn of a polynomial pn # 6n , where 6n denotes the set of all algebraic
polynomials of degree n, i.e., the measure which associates the mass 1�n
with each of the zeros of pn , where each zero is counted according to its
multiplicity. The discrepancy can be estimated in terms of bounds for the
logarithmic potential of +&&,

U(+&&, z) :=| log
1

|z&t|
d(+&&)(t).
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The first result in this direction was given by Erdo� s and Tura� n [9]. They
considered the distribution of the zeros of a monic polynomial pn # 6n ,
based only on its Chebyshev-norm on L,

&pn&L :=max
z # L

| pn(z)|.

If L is the interval [&1, 1] and

&pn&L�An�2n=An(capL)n (1.1)

then the logarithmic potential of +&& has an upper bound, namely

U(+&&, z)�
log An

n
(z # C),

(see [6]) and the discrepancy can be estimated by

D[+&&]�
8

log 3 �
log An

n
(1.2)

if all zeros of pn are located on [&1, 1]. If L is a circle this problem was
solved again by Erdo� s and Tura� n [10]. For sufficiently smooth L analogue
results are due to Sjo� gren [18] and Blatt and Grothmann [6].

In Blatt [5] it is shown that the estimate (1.2) can be considerably
sharpened if the zeros xi are simple and this ``simplicity'' can be quantified
in a way that

| p$n(xi)|�
1

Bn

1
2n=

1
Bn

(cap L)n (1.3)

for all zeros xi of pn . The basis of the proof was the reformulation of (1.1)
and (1.3) as a two-sided bound of the logarithmic potential. For doing this,
let 8 denote the conformal mapping of the unbounded component 0 of
C� "L, where C� :=C _ [�], onto

2 :=[t # C� : |t|>1]

such that 8(�)=� and 8$(�)>0. Let G(z) be the Green's function of
0, then

G(z)=log |8(z)| (z # C).
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For any $�0, let

L1+$ :=[z # C : G(z)=log(1+$)]

denote the level curve of the Green's function G. Then the conditions (1.1)
and (1.3) yield for any k>0 the two-sided bound

|U(+&&, z)|�c
log Cn

n
, Cn :=max(n, An , Bn),

for all z with G(z)�log(1+$n) where $n=1+n&k and c is a constant
depending on k, but independent of n. If L is sufficiently smooth and
log Cn�n is less than a fixed constant less than 1, then the discrepancy
estimate

D[+&&]�c
log Cn

n
log

n
log Cn

holds (see Blatt [5], Totik [20], and Blatt and Mhaskar [7]).
It is therefore quite natural to ask for discrepancy estimates if, instead of

an upper bound, a lower bound for the logarithmic potential U(+&&, z) is
known. In this context this question seems to be new although Blatt et al.
[8] have used quantified ``simplicity estimates'' of zeros of polynomials to
get asymptotic estimates about the distribution of extremal points in
Chebyshev approximation. A basic tool in [8] was a technique of Kleiner
[14] which he used to obtain results for the distribution of Fekete points
on smooth Jordan curves.

This paper has now two main objects:

(1) to derive discrepancy estimates if the logarithmic potential
U(+&&, z) has a one-sided bound, and

(2) to generalize the discrepancy results for piecewise smooth Jordan
curves and arcs.

It turns out that a unified treatment for discrepancy estimates can be
obtained for both types of bounds on U(+&&, z). Surprisingly, the
theorems show that corners of L play no role if cusps are excluded. In [11]
Grothmann has given discrepancy results depending on the angles at the
corners. But in Grothmann's theorems the zeros of the polynomials are not
restricted on the curve or the arc L, contrary to our assumptions. The dis-
crepancy results of Kleiner for Fekete-points and estimates for the distribu-
tion of extremal points of best uniform approximants (see [6]) on smooth
curves are special cases of our main Theorem 1. Since it is difficult to follow
the original proof of Kleiner [14] we think that our proof provides easier
access to his interesting results.
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2. MAIN DEFINITIONS AND RESULTS

If L is a Jordan curve we denote by int L the bounded component and by
ext L the unbounded component of C� "L. Let 9 :=8&1, cap L :=9$(�).

Following [17] the smooth Jordan curve L is called Dini-smooth if the
angle ;(s) of the tangent, considered as a function of the arc length s,
satisfies

|;(s2)&;(s1)|<h(s2&s1) (s1<s2),

where h(x) is an increasing function for which

|
1

0

h(x)
x

dx<�. (2.1)

In the following we will use an obvious geometrical fact:
If L is a Dini-smooth curve then for any point z(s) # L, the relation

L & [z : |z&z(s)|�=]

/[z=z(s)+rei% : 0�r�=, |%&;(s)|�h(cr)

or |%+?&;(s)|�h(cr)] (2.2)

holds with some constants =>0 and c>0 independent of s.
We call a Jordan arc Dini-smooth if it is a subarc of some Dini-smooth

curve. Finally, a Jordan curve or arc is called piecewise Dini-smooth if it
consists of a finite number of Dini-smooth arcs which form non-zero angles
at their corners. Thus, by definition a piecewise Dini-smooth curve or arc
has no cusps.

Let p(z)= pn(z)=>n
i=1 (z&zi), be a monic polynomial of degree n # N.

We associate with p the normalized counting measure &=&p of its zeros
and assume in the following that all zi # L.

If L is a curve we consider an additional conformal mapping . of int L
onto the unit disk D with .(z0)=0, .$(z0)>0, where z0 # int L is a fixed
point. Let

L1&$ :=[z : |.(z)|=1&$] (0<$<1),

then our basic results will be formulated in terms of

C$ :={L1+$

L1+$ _ L1&$

if L is an arc
if L is a curve,

asup($) := sup
z # C$

U(+&&, z),

ainf($) := inf
z # C$

U(+&&, z).
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Note that asup($)�0, ainf($)�0 and let

a($)=min[asup($), &ainf($)].

Theorem 1. Let L be a piecewise Dini-smooth curve with all inner angles
�?, or let L be an arbitrary piecewise Dini-smooth arc. Then there exist con-
stants c=c(L)>0 and 0<$0=$0(L)<1�e such that for 0<$<$0 ,

D[+&&]�c �$ log
1
$ \

a($�2)
$

+1+ . (2.3)

Corollary 1. Let L be as in Theorem 1. Suppose that the monic polyno-
mial p= pn # 6n , n�2, satisfies at least one of the following two conditions:

(i) &p&L�An(cap L)n with 2�An�en�e;

(ii) all zeros z1 , ..., zn of p are simple and

| p$(zj)|�
1

An
(cap L)n ( j=1, ..., n)

with n<An�en�e.

Then there exists a constant c>0 dependent only on L such that

D[+&&]�c �$n log
1
$n

, (2.4)

where

$n :=
log An

n
.

Indeed, reasoning in a standard way (see [5, 20, 7]) we get

asup($�2)�
1
n

log An ($>0)

for the polynomial p satisfying condition (i), and

&ainf($�2)�
c1

n \log An+log
1
$

+n $+ (0<$<1�e)

for p satisfying (ii), where c1=c1(L)>0. Hence (2.3) with $ :=$n yields
(2.4).
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Theorem 2. Let L be an arbitrary piecewise Dini-smooth curve, z0 # int L
be fixed. Then there exist constants c=c(L, z0)>0 and 0<$0=$0(L, z0)<
1�e such that for 0<$<$0 ,

D[+&&]�c �$ log
1
$ \

2asup($�2)&U(+&&, z0)
$

+1+ ,

D[+&&]�c �$ log
1
$ \

&2ainf($�2)+U(+&&, z0)
$

+1+ .

Corollary 2. Let L be as in Theorem 2, and let a monic polynomial
p= pn # 6n , n�2, satisfy one of the conditions (i), (ii) from Corollary 1.
Then inequality (2.4) holds with

$n :=min \1�e,
1
n

log
A2

n(cap L)n

| pn(z0)| +
in the case (i), and

$n :=min \1�e,
1
n

log
Ac1

n | pn(z0)|
(cap L)n + , c1=c1(L, z0)>1,

in the case (ii).

First, we want to discuss the sharpness of the above results: Let
L=[&1, 1]. According to (1.2), for any polynomial pn satisfying (i) the
inequality (2.4) is sharp up to the logarithmic term.

For polynomials pn with property (ii) our estimate coincides with the
result of Kleiner [14]. In this case it can be shown that at least the estimate
c - $n for the discrepancy D[+&&] cannot be improved. The question,
whether the logarithmic term is necessary, is still open. Indeed, let 2�
An�en�e be arbitrary. Consider the monic polynomial

Pn(x) :=
(1&$n �2)n

2n&1 cos \n arc cos
x

1&$n�2+ ( |x|�1&$n�2).

At the zeros xi # En :=[&1+$n�2, 1&$n�2], i=1, ..., n, of Pn we have

|P$n(xi)|=
(1&$n�2)n&1

2n&1 n
1

�1&\ xi

(1&$n �2+
2
�

1
An

1
2n .
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Hence the polynomial Pn , considered on [&1, 1] satisfies the condition
(ii) from Corollary 1. On the other hand,

D[+&&]�+([1&$n�2, 1])�- $n .

Finally we want to remark that for curves and arcs with cusps the state-
ment of Corollary 1, and consequently Theorem 1, in general is not true:
In the following we denote by c, c1 , ... positive constants, and by =, =1 , ...
sufficiently small positive constants, in general different at different
occurrences, but only depending on the geometry of L. We shall use the
notations aPb for a�cb and a �� b if simultaneously aPb and bPa.

Consider a function f # C2([0, 1]) satisfying for j=0, 1, 2 conditions

f ( j)(x)>0 (0<x<1),

lim
x � +0

f ( j)(x)=0.

It is easily seen that the Jordan arc L :=11 _ 12 , where

11 :=[z=x+if (x) : 0�x�1], 12 :=[0, 1],

has a cusp at the origin. According to a result of Pommerenke [16] a
Fekete polynomial Fn of degree n for the arc L satisfies

&Fn&L Pn2(cap L)n. (2.6)

Let z1 , ..., zm , m�n, be the zeros of Fn belonging to the segment
[0, 1

2 g(1�n2)], where g := f &1. We select points `1 , ..., `m # 11 such that

|zj&`j |=d(zj , 11) ( j=1, ..., m),

where

d(A, B) :=dist(A, B) := inf
z # A, ` # B

|z&`| (A, B/C).

Let us consider the polynomial

p(z)= pn(z) :=Fn(z) `
m

j=1

z&`j

z&zj
.

It is easily verified that

| p(z)|�|Fn(z)| (z # 11). (2.7)
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Furthermore, let 81 be the conformal mapping of C� "11 on 2 with
81(�)=(�), 81(�)>0. By [19, p. 181], we have for z # [0, g(1�n2)]

1
n2�d(z, 11)p ( |81(z)|&1)2 .

Hence, the well-known Bernstein�Walsh theorem yields for any
z # [0, g(1�n2)]

| p(z)| P&p&11
�&Fn &L . (2.8)

By our assumption, in some neighborhood of the origin we have
f (x)�x2. Then for sufficiently large n we obtain

1
n

� g \ 1
n2+

and therefore

} p(z)
Fn(z) }�\1+

2�n2

g(1�n2)+
m

�\1+
2
n+

n

�e2 (2.9)

for all z # [ g(1�n2), 1]. Comparing (2.7)�(2.9), we get

&p&L P&Fn&L Pn2(cap L)n.

Hence, if n is large enough then

$n P
log n

n
.

At the same time

} (+&&) \_0,
1
2

g \ 1
n2+&+}=+ \_0,

1
2

g \ 1
n2+&+p g\ 1

n2+ .

It is obvious that g(x) can tend to zero (as x � 0) arbitrarily slowly and
we come to the conclusion that for arcs with cusps the discrepancy of the
measure +&& cannot be estimated by a universal function of An .

3. SOME AUXILIARY FACTS FROM GEOMETRIC FUNCTION
THEORY AND QUASICONFORMAL MAPPINGS

We begin with an estimate which can be derived from [13, pp. 319�320]
(see also [12, p. 6]). The definitions and properties of moduli of families of
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curves, harmonic measures, quasiconformal curves, and quasiconformal
mappings used below can be found in [1, 2, 15].

Let G be a bounded Jordan domain, and let J be a subarc on its bound-
ary �G. The harmonic measure |(z, G, J) of J at the point z # G with
respect to G satisfies

|(z, G, J)�c exp(&?m(1 )), (3.1)

where m(1 ) is the module of the family 1 of all cross cuts of G separating
in G arc J from the point z.

Let 0 be the unbounded domain (� # 0) of the complement C� "L with
a piecewise Dini-smooth curve L=�0 as boundary. Note that L is a
quasiconformal curve. Therefore, the function 8 can be extended to a
quasiconformal mapping 8 : C� � C� of the extended complex plane C� onto
itself. Hence in the study of the metric properties of the conformal map-
pings 8 and 9 :=8&1 we can use the following result for quasiconformal
mappings.

Lemma 3.1 [3, Lemma 1]. Let w=F(`) be a K-quasiconformal mapping
of the plane on itself, with F(�)=�, `j # C, wj :=F(`j), j=1, 2, 3, and
|w1&w2 |�c1 |w1&w3 |. Then |`1&`2 |�c2 |`1&`3 | and, in addition,

} `1&`3

`1&`2 }�c3 }w1&w3

w1&w2 }
K

,

where ci=ci (c1 , K), i=2, 3.

Since F&1 is also a K-quasiconformal mapping, it follows from
|`1&`2 |�c2 |`1&`3 | that |w1&w2 |�c4 |w1&w3 | and

}w1&w3

w1&w2 }�c5 } `1&`3

`1&`2 }
K

, (3.2)

where ci=ci (c2 , K), i=4, 5.
An immediate consequence of Lemma 3.1 is the following statement

needed in Section 7.

Lemma 3.2. Let 0<$<1�2; w1 and w2 be such that

|w1 |=|w2 |=1, |w1&w2 |�=$.

Let w~ i :=(1+$) wi , zi :=9(wi), z~ i :=9(w~ i), i=1, 2. There exist constants
c=c(=, L) and 0<;=;(L)�1 such that

} z2&z~ 2
z2&z1 }�c } z1&z~ 1

z1&z2 }
;

. (3.3)
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Proof. Applying Lemma 3.1 and (3.2) to F=8, we obtain for some
K=K(L)�1

} z2&z~ 2
z2&z1 }

K

P } $
w2&w1 } ,

} z1&z~ 1
z1&z2 }p } $

w1&w2 }
K

.

Combining these inequalities we get (3.3) with ;=K&2.

If G is a domain bounded by a Dini-smooth Jordan curve, then each
conformal mapping . of G onto the unit disk D :=[w : |w|<1] has a
continuously differentiable extension to G� with .$(z){0. For domains
bounded by a piecewise Dini-smooth curve or piecewise Dini-smooth arc
this result has some consequences and generalizations, which we formulate
as Lemmas 3.3�3.5 (see [17, p. 52], for more details).

Lemma 3.3. Let L be a piecewise Dini-smooth curve, z0 # L be a corner
with inner angle :?, 0<:<2.

Then there exists a constant ===(L, z0)>0 such that for all points z # L,
` # 0� with |z&`|�|z&z0 |�= and their images w :=8(z), { :=8(`),
w0 :=8(z0) the inequalities

c1 }w&w0

w&{ }� } z&z0

z&` }�c2 }w&w0

w&{ } ,
c3 |w&w0 |2&:�|z&z0 |�c4 |w&w0 | 2&:,

hold with some constants cj=cj (L, z0 , =, :)>0, j=1, ..., 4.

Now let L be a piecewise Dini-smooth arc, i.e. L consists of a finite
number of Dini-smooth arcs l1 , ..., lm . Denote by zj and zj+1 the end points
of lj (the end points of L are denoted by z1 and zm+1). Set

8(z1)=: w1 , 8(zm+1)=: wm+1 ,

21 :=[w : |w|>1, arg w1<arg w<arg wm+1],

22 :=2"2� 1 , 0i :=9(2i), i=1, 2.

It is easy to see that the boundaries of 21 and 22 are quasiconformal
curves. Moreover, according to [4, Lemma 1], the boundary of 01 and
02 is also a quasiconformal curve. Hence, the restriction 8i : 0i � 2i

of function 8 to domain 0i can be extended to a quasiconformal
mapping 8i : C� � C� of the whole plane on itself, a fact that allows us to
use Lemma 3.1 with F=8i .
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Lemma 3.4. Let L be a piecewise Dini-smooth arc as above with corners
at the points zj , j=2, ..., m, and angles :j, i ?, 0<:j, i<2, with respect to 0i .
Then there exists =>0 such that for all points z # lj&1 _ lj , ` # 0� i , with

|z&zj&1 |�=, |z&zj+1 |�=,

|z&`|�|z&zj |,

and their images {i :=8i (`), wj, i :=8i (zj), and wi :=8i (z) the inequalities

c1 }wi&wj, i

wi&{i }� } z&zj

z&` }�c2 }wi&wj, i

wi&{i } , (3.4)

c3 |wi&wj, i |
:j, i�|z&zj |�c4 |wi&wj, i |

:j, i (3.5)

hold with some constants ck=ck(L, =, :j, i)>0, k=1, ..., 4.

To complete the distortion properties of the conformal mapping 8 in the
case of an arc L we can describe its behaviour in the neighborhood of the
end points z1 and zm+1 of L as follows.

Lemma 3.5. Let L be a piecewise Dini-smooth arc as above and let
zj , j=1, m+1 be its end points. Then there exists a constant ===(L)>0
such that for any i=1, 2, and all points z # L, ` # 0� i with

|z&`|�|z&zj |�=

and their images {i :=8i (`), wi :=8i (z), wj, i :=8i (zj) the inequalities (3.4)
and (3.5) hold with :j, i=2.

Moreover, we need a simple special fact concerning smoothness proper-
ties of harmonic functions.

Lemma 3.6. Let u be a harmonic function in 2, continuous in 2� and
satisfying for %, %0 # R, 0<4$<=<1, M>0 the inequalities

|u(ei%)&u(ei%0)|�M( |%&%0 |+$) ( |%&%0 |�=),

|u(ei%)|�M.

Then for 0<R&1<$,

|u(Rei%0)&u(ei%0|�cM$ log
1
$

with some constant c=c(=)>0.
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Proof. By Poisson's formula,

|u(Rei%0)&u(ei%0)|�
1

2? |
2?

0
(R2&1)

|u(ei')&u(ei%0)|
1&2R cos('&%0)+R2 d'

�
5M$
2? |

%0+4$

%0&4$

R2&1
1&2R cos('&%0)+R2 d'

+?$M |
%0+=

%0+4$

d'
'&%0

+
?

2=2 M$�cM$ log
1
$

.

4. PROOF OF THEOREM 1

First, let L be an arc. We restrict ourselves to the case a($�2)=asup($�2),
i.e.

U(+&&, z)�a($�2) (z # ext L1+$�2). (4.1)

The other case a($�2)=&ainf($�2) can be handled in the same way. Con-
sider an arbitrary subarc J/L. For our purposes it is enough to establish
the inequality

(&&+)(J)�c�$ log
1
$ \

a($�2)
$

+1+ (4.2)

for sufficiently small $.
By our assumption L=�m

j=1 lj , where each lj is a Dini-smooth arc.
Denote as before by zj and zj+1 the end points of lj , and by `1 and `2 the
end points of J.

Let =1>0 be a fixed such that

|zj&zj+1 |�4=1 ( j=1, ..., m). (4.3)

We consider first the case that one of the end points of J coincides with
one of the end points of L and the other endpoint of J is ``far away'' from
corners. Let us assume that `1=z1 ,

|`2&zj |�=1 ( j=2, ..., m).

The most delicate situation occurs if `2 # lm . Therefore, let us investigate
first this case. Since by Lemma 3.5

(&&+)(J)=(+&&)(L"J)�+(L"J)�c1 |`2&zm+1 | 1�2,
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we may assume without loss of generality that

|`2&zm+1 |�c2 t2, (4.4)

where

t :=�$ log
1
$

(4.5)

and c2 is a constant which is large enough for our reasoning below.
Set R :=L1+$ , E :=int R, R$ :=[w : |w|=1+$]. Moreover, for any

point z # 0 define the following points: w :=8(z), wL :=w�|w|, wR=
(1+$)wL , zL=9(wL), zR :=9(wR). Let wm+1=ei%m+1 :=8(zm+1), and let
{1=ei'1 and {2=ei'2 be points such that '2<%m+1<'1<'2+2?, 9({1)=
9({2)=`2 .

By Lemma 3.5 and (4.4) for sufficiently large constant c2

'1&%m+1
�� %m+1&'2 ,

|'j&%m+1 |�3t ( j=1, 2).

Let f� [(1+$) ei'] be the 2?-periodic function defined for {=(1+$) ei' by

f� ({) :={
1 if '1&t�'�'2+2?

1
t

('&'1+2t) if '1&2t�'<'1&t

0 if %m+1�'�'1&2t

f� ({*) if '2�'<%m+1 ,

where {* # R$ is such that {*{{, [9({*)]L=[9({)]L . Note that by virtue
of Lemma 3.5, for points t1 , t2 # R$ with |t1&t2 |�$ we have

| f� (t1)& f� (t2)|�
c3

t
|t1&t2 | . (4.6)

Set f (z)= f� [8(z)], z # R. Let f+(z) be the harmonic function in ext R and
let f&(z) be the harmonic function in int R which satisfy the boundary
conditions

f+(z)= f&(z)= f (z) (z # R).

Set

f� +(w) := f+[9(w)] ( |w|�1+$),

f� &(w) := f&[9(w)] (1�|w|�1+$).
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Using Lemma 3.6 for the function u({) := f� +((1+$){), { # 2, we obtain by
(4.6) the following estimate for w with 1+$<|w|<1+2$:

| f� +(w)& f� (wR)|�c4

$
t

log
1
$

=c4 t. (4.7)

It turns out that the same fact is valid for the function f� & , namely

Lemma 4.1. There exists a constant c5>0 such that

| f� &(w)& f� (wR)|�c5 t (4.8)

for 1�|w|<1+$.

The proof of Lemma 4.1 will be given in Section 6.
Returning to the proof of (4.2), we average the functions f+ and f& in

some special way. Set

f� (w) :={ f� +(w)
f� &(w)

if |w|�1+$
if 1�|w|<1+$.

Let K(z), z # C, be an arbitrary averaging kernel, i.e., K # C�(C),

K(z)=K( |z| )�0 (z # C),

K(z)=0 (|z|�1),

| K(z) dmz=1.

Consider in 2 the function

g~ (w) :={
16
$2 | f� ({) K \4({&w)

$ + dm{ if |w|>1+
1
2

$

f� &(w) 1�|w|�1+
1
2

$,

If 1�|w|<1+ 3
4 $ or |w|>1+ 5

4 $ the value of g~ (w) is an average of the
harmonic function f� &(w) or f� +(w) respectively. Hence, by the mean-value
property of harmonic functions

g~ (w) :={ f� +(w)
f� &(w)

if |w|>1+ 5
4$

if 1�|w|<1+ 3
4 $,
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and therefore 2w g~ (w)=0 for such w. Note that g~ # C �(2) and

0� g~ (w)�1. (4.9)

Moreover, according to (4.7) and (4.8)

|2w g~ (w)|�c6

t
$2 \1+

3
4

$�|w|�1+
5
4

$+ . (4.10)

Finally, the function

g(z) :={ g~ [8(z)],
f&(z),

z # 0
z # L

has in C partial derivatives of all orders and by Green's formula

| 2z g(z) dmz=0. (4.11)

Applying the technique of [6] we can establish the inequality

} | g(d&&d+) }�c7

at
$

, (4.12)

where a :=a($�2). In fact, by Green's formula g can be represented as

g(z)= g(�)+
1

2? | 2` g(`) log |z&`| dm` (z # C).

We obtain according to (4.1), (4.10), and (4.11)

}| g(d&&d+) }= 1
2? }| (a+U(&&+, `)) 2` g(`) dm` }

�
1

2? |
2

(a+U� (&&+, w)) |2w g~ (w)| dmw

�c8

t
$2 |

1+(5�4)$

1+(3�4)$
r |

2?

0
((a+U� (&&+, rei%)) d% dr

�c9

at
$

,

where U� (&&+, w) :=U(&&+, 9(w)).
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Conditions (4.8), (4.9), and (4.12) imply

(&&+)(J)�| g(d&&d+)++(12t)+|
L"(J _ 12t)

g d+

+|
J

(1& g) d&�c10 \at
$

+t+ ,

where

1r :=9([ei' : '1&r�'�'1]) (0<r�3t).

Now we assume that both points `1 and `2 are in a sufficiently small
neighbourhood of some of the corners, and precisely let

|`j&z2 |�=1 ( j=1, 2).

In this case our reasoning will be the same as before. However, the con-
struction of the auxiliary function f� needs some modifications.

Let L have at the point z2 an exterior angle :? with respect to the region
01 , 0<:�1, and let ei'j={j :=81(`j), ei%2=w2 :=81(z2). We fix two
points !1 # l1 and !2 # l2 such that

|!j&z2 |�3=1 , |!1&z1 |�=1 , |!2&z3 |�=1 , (4.13)

where =1 is a constant from (4.3) and set

82(!j)=: tj=ei;j ( j=1, 2).

The points (1+$)tj divide R$ into two subarcs. Denote by S$ the subarc
which includes the point (1+$) w2 . Without loss of generality we assume
that

;2<'2<'1<;1<;2+2?, ;2<%2<;1 .

We choose a constant c, 1�c�10, such that

%2 � ['2&4ct, '2&ct] _ ['1+ct, '1+4ct], (4.14)

where as before

t=�$ log
1
$

.
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Consider the function f� ({)= f� ((1+$) ei'), ;2�'�;1 , given on S$ by

f� ((1+$)ei')

:={
1 if '2&2ct�'�'1+2ct

0 if ;2�'�'2&3ct or '1+3ct�'�;1

1
ct

('&'2+3ct) if '2&3ct�'�'2&2ct

1
ct

(&'+'1+3ct) if '1+2ct�'�'1+3ct.

Let f be the function, harmonic in C� "S where S :=9(S$), with boundary
values

f (z) := f� (8(z)) (z # S).

For w # 2� set f� (w) := f (9(w)). Then the following estimate holds.

Lemma 4.2. Let w # S$$ :=[w # 2� : dist(w, S$)�$].

(i) If wR # S$, then

| f� (w)& f� (wR)|�c1t. (4.15)

(ii) If wR # S$$"S$ then

f� (w)�c2t. (4.16)

The proof of Lemma 4.2 is given in Section 7. Using this lemma the
proof of (4.2) is complete by repeating step by step our reasoning from the
previous case with the new function f� . But then (4.2) is proved since for an
arbitrary subarc J of an arc L

(&&+)(J)= :
4

j=1

(&&+)(Jj),

where each of Jj satisfies one of the two restrictions mentioned above.
If L is a curve, the proof of (2.3) is even simpler than in the previous case

of an arc, because we don't need to take care of end points. A short sketch
of the proof follows: As before we assume that (4.1) holds. Obviously, it is
enough to prove (4.2) for an arbitrary subarc J/L with end points `1 , `2

such that

J/lj _ lj+1, |`k&zi |�= (k=1, 2; i= j, j+2),
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where =>0 is fixed and lj , j=1, ..., m, are the Dini-smooth arcs with end
points zj , zj+1 of which the curve L consists. We may restrict ourselves to
j=1. As above let

ei'j={j :=8(`j), j=1, 2; ei%2=w2 :=8(z2)

and consider the 2?-periodic function

f� ((1+$)ei')={
1 if '2&2ct�'�'1+2ct
0 if '1+3ct�'�'2&3ct+2?

1
ct

('&'2+3ct) if '2&3ct�'�'2&2ct (4.17)

1
ct

(&'+'1+3ct) if '1+2ct�'�'1+3ct.

where again the constant 1�c�10 satisfies (4.14) and t is given by for-
mula (4.5). Then the same arguments of the first part of the arc case lead
to the estimate (4.2).

5. PROOF OF THEOREM 2

We restrict ourselves to prove (2.5) and it is sufficient to obtain the
estimate

(&&+)(J)�c�$ log
1
$ \

2asup($�2)&U(+&&, z0)
$

+1+
for a subarc J/L. Moreover, we may assume without loss of generality
that

J/l1 _ l2 , |`k&zj |�=1 (k=1, 2, j=1, 3),

where `1 and `2 are the end points of J, =1>0 is fixed and satisfies (4.3).
Let L have at the point z2 an interior angle :? with respect to the domain
G :=int L, 0<:<2.

The proof, i.e., the construction of the auxiliary functions f\, depends
essentially on the value of :. More precisely we have to distinguish two
cases.

(a) :�1. Consider fixed points !1 # l1 and !2 # l2 satisfying (4.13).
Let .(!j)=: {j . The points (1&$) {1 and (1&$) {2 divide the circle
[{ : |{|=1&$] into two parts. Denote by s$ that one which does not
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include the point (1&$) .(z2). Let s :=�(s$) where � :=.&1. We consider
the function f� given by the formula (4.17). Set f (z)= f� [8(z)],
z # L1+$=: R. As above let f+ be the harmonic extension of f to ext R. By
f& we denote the harmonic extension of the function f on R and 0 on s to
(int R)"s.

Thus the construction of the function f& is essentially different from that
in the proof of Theorem 1 for curves. Nevertheless, the analogue of
Lemma 4.2 can be proved too.

Now consider the functions

f+[9(w)], |w|�1+$,

f� (w) :={ f&[9(w)], 1<|w|<1+$,

f&[�(w)], 0�w<1,

g~ (w) :={
16
$2 | f� ({) K \4({&w)

$ + dm{ if 1+
3
4

$�|w|�1+
5
4

$

16
$2 | f� ({) K \4({&w)

$ + dm{ if 1&
5
4

$�|w|�1&
3
4

$

f� (w) otherwise,

g~ (8(z)), z # 0,

g(z) :={ g~ (.(z)), z # G,

f&(z), z # L.

To obtain the upper estimate for the quantity (&&+)(J) we have to repeat
the reasoning of the proof of Theorem 1 with the new function g. Following
analogue arguments as used in [6] the quantity U(+&&, z0) plays a signifi-
cant role and leads to the estimate in Theorem 2.

(b) :>1. We repeat our reasoning of the case (a), but now inter-
changing the roles of the domains G and 0, the functions . and 8, and so
forth.

6. PROOF OF LEMMA 4.1

We begin with an auxiliary fact concerning the harmonic measure with
respect to the region E :=int L1+$ .

Let T/L be an arc with end points !1 and !2 such that

!1=z1 , !2 # lm , |!2&zm |�=1 .
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Set for $>0, R :=L1+$ ,

T$ :=[` : ` # R, `L # T ].

Consider the function

|(z) :=|(z, E, T$) (z # E),

i.e., the harmonic measure of T$ at the point z with respect to the region E.
We assert that for z # E"L with zL # L"T the following inequality

|(z)Pexp \&c
b
$+ (6.1)

holds, where b :=dist(8(z), T $),

T $ :=[w : |w|=1, 9(w) # T ].

Indeed, without loss of generality we assume that b�2$.
Denote by Q/E a quadrilateral whose boundary consists of

#1 :=[` # E : `L=!2],

#2 :=[` # E : `L=zL],

and two subarcs of the curve R.
Let m(Q) be the module of Q, i.e., the module of the family of all cross

cuts of Q separating in Q the sides #1 and #2 .
According to (3.1) and the comparison principle,

|(z)Pexp[&?m(Q)]. (6.2)

Further, we can apply Rengel's inequality (see [15, p. 22])

m(Q)�
s(Q)2

A(Q)
, (6.3)

where A(Q) is the Euclidean area of Q ; s(Q) is the distance between #1 and
#2 in Q, i.e.,

s(Q) := inf
# # 1Q(#1, #2)

|#|,

where 1Q(#1 , #2) denotes the set of all cross cuts of Q which join #1 and #2 ,
and |#| denotes the length of #. Since by Lemma 3.1

s(Q)p |zL&!2 |,

A(Q)P |zL&!2 | |!2&(!2)R | ,
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we see that, by virtue of Lemma 3.4 and (6.3),

m(Q)p } zL&!2

(!2)R&!2} ��
b
$

. (6.4)

Combining (6.2) and (6.4) we get (6.1).
Writing the inequality (6.1) for the arc L"T instead of T we obtain the

following estimate for the case z # E"L, zL # T,

1&|(z)Pexp \&c
b$
$ + , (6.5)

where b$ :=dist(8(z), �D"T $).
Returning to the proof of Lemma 4.1, we consider three particular posi-

tions of the point z # E. If zL # L"(J _ 13t) then, using inequality (6.1) with
T=J _ 12t , we obtain

| f&(z)& f (zR)|= f&(z)�|(z, E, T )Pexp \&c1

t
$+�t.

Similarly, if zL # J, then by (6.5) for T=J _ 1t we have

| f&(z)& f (zR)|=1& f&(z)�1&|(z, E, T )Pt.

The most complicated case is zL # 13t . Then we consider the set

M :={` # R : |`&zL |�c2 |zL&zm+1 | 1�2 $ log
1
$= ,

where the constant c2 can be chosen so large that (6.1) and (6.5) hold and

|(z, E, R"M)�t.

Finally, by (4.6) and Lemma 3.5 we obtain for ` # M

| f (`)& f (zR)| P
1
t

|`&zL |
|zm+1&zL | 1�2 P

$
t

log
1
$

.

Therefore, the maximum principle for harmonic function yields

| f&(z)& f (zR)|�sup
` # M

| f (`)& f (zR)|+|(z, E, R"M)

P
$
t

log
1
$

+t=2t.

This completes the proof.
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7. PROOF OF LEMMA 4.2

According to Beurling's theorem (see [2, p. 43]) for all z # V :=C� "S
with properties

|z&z2 |�2=1 , dist(z, S)�=1 ,

where =1 is the constant of (4.3), we have

f (z)�c1 - dist(z, S). (7.1)

Therefore, the inequalities (4.15) and (4.16) in the case that w satisfies

1<|w|�1+$, |z&z2 |�2=1 ,

where z :=9(w), are simple consequences of (7.1) and the maximum prin-
ciple for harmonic functions.

Furthermore, applying (7.1) or Lemma 3.6 to the function

u(ei') := f (9((1+$) ei')) (0�'<2?)

we obtain the inequalities (4.15) and (4.16) for w with 1+$<|w|�1+2$.
Thus we have only one nontrivial case, namely

|z&z2 |�2=1 , z # 01 & int R.

We begin with the estimation of the quantity

| f� (w)& f� (wR)|=| f (z)& f (zR)|

by some expressions using the notions of harmonic measure and some spe-
cial cross cuts of the domain V.

It follows from Lemma 3.1 that

diam([` # (int R) & 01: `L=zL])=: d �� |zL&zR |. (7.2)

Without loss of generality we assume that $ and consequently d are suf-
ficiently small. For d<r<= :==1 �2 we denote by #(r)=#z(r) the arc of the
intersection [` : |`&zL |=r] & V that separates the point z from �. Define
by l(r)=lz(r) the subarc of S which has the same end points as #(r). It is
obvious that

diam l(r)Pr.
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Consider the Jordan domain W/V that includes the point z and is
bounded by �W=l(=) _ #(=). Define for r>0

u(r) := sup
! # �W |!&zR|�r

| f (!)& f (zR)| .

Let v(r) :=|(z, W, �W"l(r)), d<r<=, be the harmonic measure of the arc
�W"l(r) at the point z with respect to W. For convenience let v(d ) :=1.
Hence, choosing a natural number k such that

=
2

�2kd<=

we get by the maximum principle for harmonic functions

| f (z)& f (zR)|�u(diam l(d ))

+ :
k&1

j=0

v(2 jd ) u(diam l(2 j+1d ))+v(=�2)

�u(cd)+2 |
=

d

u(cr)
r

v \r
2+ dr+v(=�2).

Denote by 1(r), d<r<=, the family of all cross cuts of W which separate
the point z from �W"l(r). By (3.1) we obtain

v(r)Pexp(&?m(1(r))), (7.3)

where m(1(r)) is the module of the family 1(r). By the integrated version
of the composition laws (see [2, p. 56])

m(1(r))�|
r

d

dx
|#(x)|

,

where |#(x)| denotes the length of #(x). Together with (7.3) this implies

| f (z)& f (zR)|

Pu(2cd )+|
=

2d

u(cr)
r

exp \&? |
r�2

d

dx
|#(x)|+ dr+exp \&? |

=�2

d

dx
|#(x)|+ .

Two immediate conclusions can be made. Namely, it is easy to see that
for any z

u(2cd)P
$
t
�t.
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Further, since

|#(x)|�2?x,

dP$,

we obtain

exp \&? |
=�2

d

dx
|#(x)|+�\2d

= +
1�2

P$1�2�t.

By (2.2), Lemma 3.1, and Lemma 3.2 we have for d<x<= and some
0<;<1

=2x�|#(x)|�?(x+c1xh(c2 x)+c3 d;x1&;),

where h is the function from the definition of Dini-smooth curve. Hence by
(2.1)

? |
r�2

d

dx
|#(x)|

=|
r�2

d

dx
x

+|
r�2

d

?x&|#(x)|
x|#(x)|

dx

�log
r

2d
&

c1

=2
|

r�2

0

h(c2x)
x

dx&
c3

=2

d; |
r�2

d

x1&;

x2 dx

�log
r
d

&c4 ,

and, consequently,

|
=

2d

u(cr)
r

exp \&? |
r�2

d

dx
|#(x)|+ drPd |

=

2d

u(cr)
r2 dr

=cd |
=c

2cd

u(r)
r2 dr.

In order to establish inequality (4.15) we have therefore to show that

d |
=3

d

u(r)
r2 drP t. (7.4)

Let w2 :=81(z2) and consider two particular positions of the point z.
First assume that |wL&w2 |�t�2 holds. By our assumption and

Lemma 3.3, d<|zL&z2 | and for d<r<|zL&z2 |,

u(r)P
r
t

|wL&w2 |
|zL&z2 |

.
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Thus we have owing to Lemma 3.1

d |
=3

d

u(r)
r2 Pd |

|zL&z2|

d

u(r)
r2 dr+d |

=3

|zL&z2|

dr
r2

P
d

|zL&z2 |
|wL&w2 |

1
t

log
|zL&z2 |

d
+

d
|zL&z2 |

. (7.5)

Note that by (7.2) and Lemma 3.3

d
|zL&z2 |

�� }zL&zR

zL&z2 } ��
$

|wL&w2 |
. (7.6)

Combining (7.5) and (7.6) we get (7.4).
Now let |wL&w2 |<t�2. Then again by Lemma 3.3 and the construction

of function f we obtain

u(r)=0 for 0<r<=4 t2&:.

Therefore, as in the previous case, we have

d |
=3

d

u(r)
r2 dr�d |

=3

=4t2&:

dr
r2�

1
=4

d
t2&:P

$
t
�t,

where we have used the inequality

d
t2&:P

$
t

. (7.7)

In order to prove (7.7) we consider the points wL=ei%L, w2=ei%2 and
assume for definiteness that

%2<=L<%2+t.

Setting { :=ei(%2+2t), ` :=9({), it follows by Lemma 3.1 and Lemma 3.3
that

|zL&zR | P |`&`R |,

}`&`R

`&z2 } ��
$
t

,

|`&z2 | �� t2&:.
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Finally we obtain

d
t2&:

��
|zL&zR |

t2&: P
|`&`R |
|`&z2 |

��
$
t

.
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